

SASBT Abstract Writing Series

The Results Section

Wendy Sykes
2 Dec 2020

4 KEY ELEMENTS

Relevance (Introduction)

- Essentially the background
- Explains why this is an important question

Question (Methods)

- What is the question that is being answered
- Must be "FINER"
- How did you do it?

Data (Results)

- Counted something
- Which can be summarised / analysed

Conclusion (Discussion)

Gives meaning to the results of your question

Willi's Order of Writing

- 1. 3 Tables and 1 Figure
- 2. Results
- 3. Discussion
- 4. Introduction
- 5. Methods
- 6. Abstract
- 7. References

Plan for today's session

- Go through the presentation
- Please stop me at any time if you have questions
- Q&A session at the end where you can ask any questions related to the Results section
- We also have our experts Karin and Marion in the session and they are always willing to help

Results

- The Results section should be a clear, concise and objective description of your study
- Usually written in the past tense
- The findings are presented without interpretation as this is done in the discussion
- The Results section mirrors the Methods section i.e. for every method (what you did) there should be a corresponding result (what you found)
- Remember that abstracts are usually restricted to **500** words
 - Important findings can get lost when too much detail is provided
 - Keep sentences short and to the point
 - Include only enough words to make your point
- Only describe the key information needed to understand what was learned from the study
- Any study data you want to talk about in the discussion must be in the results!

Tips for writing results

- Tables need to be done before you start to write your results section of your abstract
- Table or The story in numbers becomes the story in words (Results)
- State in simple words the most interesting findings in tables
 - key characteristics, main outcomes, most important, most interesting, unexpected finding
- The findings in the results section should match and answer the research question from the introduction using the procedures explained in the methods section

Results in 4 parts

- Describe the study sample
 - Number and demographics of participants
- Present primary outcomes
 - Main outcome, lab results
- Describe associations with the main outcome
 - Bivariate analysis
 - Secondary analysis or any additional (unexpected) findings
- Does the effect hold up to adjustments
 - Multivariate analysis

1. Study sample

- Who were the participants in the study
- Example:
 - There were 1200 HIV positive donors included in the study

or

- Of 1400 HIV positive donations, 1200 (86%) had sufficient plasma to be included in the study
- A total of 246,000 clients age 15 years or older had their first visit at the 4 main HIV testing branches from January 1992 to December 2000

	First survey, February 1999	Second survey, March 2001	Donor base: 1 week in 2000
Characteristic	(n = 8,026)	(n = 13,623)	(n = 16,630)
Age (years)			
17-29	1556 (20.2)	3522 (26.6)	4488 (27.0)
30-39	1778 (23.1)	2513 (19.0)	3439 (20.7)
40-55	3289 (42.7)	5370 (40.5)	6669 (40.1)
56+	1076 (14.0)	1839 (13.9)	2034 (12.2)
Gender			
Male	4441 (57.8)	7177 (54.0)	9427 (56.7)
Female	3241 (42.2)	6121 (46.0)	7203 (43.3)

^{*} Data are reported as number (%). Totals may vary due to missing values.

2. Primary outcomes

- Present the key findings of your study
 - What stands out main outcome, other outcomes, laboratory results, overall prevalence of outcome, prevalence in key subgroup e.g. By zone or gender

• Examples:

- The majority of participants were under 25 years old (72%), male (52%) and had less than secondary education (67%)...
- Overall prevalence of HIV infection was 7.1%. No HIV infections were detected among adolescents age 15 19 years....

Which is better?

- The prevalence of hepatitis C was highest in Africa and the Eastern Mediterranean, and lowest in Europe and the Americas or
- The prevalence of hepatitis C ranged from as high as 5.3% in Africa to as low as 1% in Europe as shown in Table 1.

	Infected population,	Prevalence
Region	million	rate, %
Europe	8.9	1.0
Americas	13.1	1.7
Southeast Asia	32.3	2.2
Western Pacific	62.2	3.9
Eastern Mediterranean	21.3	4.6
Africa	31.9	5.3

The choice depends on what you want to emphasize

Examples

In total 12% of the subjects had poor health, 23% had fair health, 41% had good health and 21% had excellent health.

It is not clear how much importance to give this finding.

Re-write as:

Of the 800 subjects, 12% (n = 96) reported poor health, 23% (n = 184) fair health, 41% (n = 328) good health and 21% (n=168) excellent health.

Or

Of 800 subjects who completed the survey 12% stated they had poor health, about a quarter (23%) fair health and more than half (62%) good to excellent.

Or

Of the 800 subjects, 96 (12%) reported poor health, 184 (23%) fair health, 328 (41%) good health and 168 (21%) excellent health.

3. Associations with main outcome

- Be clear on what is associated with what
- Present prevalence by sub-groups, bivariate associations
- Focus on significant findings statistically significant (p<0.05), unexpected or not associated
- Make comparisons within you data but not to other studies no interpretation
- Use statistics sparingly
 - How LIKELY are your results to be true (p-value), how strong is effect (OR)
 - How CONFIDENT can the reader be in your results (95% CI)
- Examples:
 - In bivariate analysis, HIV seropositivity was associated with age 25 44 years, female gender...
 - Over time, prevalence of HIV infection declined from 23% in 1998 to 13% in 2003, with a decreasse from 17% to 9% among men (p < 0.001) and from 31% to 17% among women (p < 0.001)

4. Multivariate analysis

- Main association can stand up to complex analysis
- Rule out confounders accounting for age, gender etc.
- Interactions e.g. men different from women
- Main hypothesis, single most important finding confirmed

• Example:

• In multivariable analysis, after controlling for geography, gender, and ethnicity, donors from the post-vac era, had a 2.9 times greater odds of being vaccinated than donors born in the pre-vac era (OR 2.89 95%CI 2.16-3.89). Compared to Coloured donors, White donors had a 2.1 times greater odds of being vaccinated (OR 2.1, 95%CI 1.21-3.65). No statistically significant odds were noted for geography and gender.

Example

- Of 1072 donors included in the study, 275 (25.7%) (pre-vac era 87/538 (16.2%) and post-vac era 188/536 (35.1%)) tested anti-HBs titre >10mIU/ml and anti-HBc negative and were therefore deemed HBV vaccinated.
- In the pre-vaccination era, vaccination rates were highest among White donors (22.5%) and donors from Free State/Northern Cape (37.14%). In contrast, Asian donors (58.8%) and those from the Northern Zone (41.5%) had the highest vaccination rates in the post-vac era. All differences were significant (p<0.01). Male and female donors had similar vaccination rates in both periods (pre-vac group 16.8%, 15.7% (p=0.82), post-vac group: 34.8%, 35.4% (p=0.96) respectively).
- In multivariable analysis, after controlling for geography, gender, and ethnicity, donors from the post-vac era, had a 2.9 times greater odds of being vaccinated than donors born in the pre-vac era (OR 2.89 95%CI 2.16-3.89). Compared to Coloured donors, White donors had a 2.1 times greater odds of being vaccinated (OR 2.1, 95%CI 1.21-3.65). No statistically significant odds were noted for geography and gender

Tips for writing results

- Just the facts
 - No interpretation
 - Compare within your data, not outside
- Don't mix Methods into Results
 - Detail of methods should be in Methods
 - If you conduct a new analysis or sub-analysis, add to Methods
- Don't mix Discussion into Results
 - No interpretation of meaning
 - Also, don't introduce Results into Discussion, go back

Reporting p values

P is helpful in evaluating if there is sufficient evidence to reject the null hypothesis, but does not actually *prove* that the null hypothesis is false (or that the alternative hypothesis is correct)

Reporting p values

It is preferable to report the actual p-value rather than simply p<0.05

BUT generally to the nearest 0.01

Include the 95% confidence interval

Example

- p=0.02 not p=0.01967
- If less than 0.01 report as p < 0.01

p < 0.001

p < 0.0001 (this is the smallest you report)

Reporting p values

How different is p = 0.07 from p = 0.04?

Not much difference

BUT

Many reviewers and editors consider p<0.05 an absolute indicator of significance

It is better to simply state that the mean for the two groups was not statistically significant and show the p-value as (p=0.07).

